益士达(厦门)电子科技有限公司
中级会员 | 第7年

17720881217

当前位置:益士达(厦门)电子科技有限公司>>配件消耗>>罗宾康变频器>> A5E03407403罗宾康变频器

罗宾康变频器

参  考  价面议
具体成交价以合同协议为准

产品型号A5E03407403

品       牌其他品牌

厂商性质代理商

所  在  地厦门市

更新时间:2019-07-26 11:11:05浏览次数:877次

联系我时,请告知来自 化工仪器网
同类优质产品更多>
配件消耗
施耐德 功率单元板子 变频器 松下集电器 MOLEX模块 施耐德功率单元 佳乐软启动 西门子模块 利德华福功率模块 KELK压力传感器 张力计 佳乐电感接近开关 H+L阀 法勒滑触线 CONTINENTAL阀 罗宾康调速器 罗宾康变频器 GE巴纳分析仪 康茂盛减压器 康茂盛过滤器 康茂盛气控阀 康茂盛气缸 康茂盛电磁阀 崇德碳刷 川崎柱塞泵 德图风速压力仪 德图烟气分析仪备用传感器 MTC 逆变单元 合康功率单元 德图温度记录仪 德图便携式温度仪 德图红外测温仪 江森控制器 梅特勒托利多传感器 VAHLE滑触线 威格士电磁阀 库伯勒编码器 传感器 AVS-ROEMER TR编码器 NAKATA VALVE系列 SPECTRO光谱仪配件 控制器 球阀 西门子变送器 转换开关 西门子电机 MAAG齿轮泵 平行轴减速机 美国microphor水阀 西门子触摸屏 带电磁制动电动机 可逆电动机 利德华福功率单元 VAHLE碳刷 西门子气体分析仪 开关电源 电感接近开关 中间继电器 固态继电器 电感式传感器 触摸屏 比勒传感器 BENTLY振动探头接线 BENDER监测器 AUMA执行机构 施耐德功率模块 AEG扇形板 信号隔离器 英博电容器 MOX模块 AVS行程开关 穆尔继电器 VIPA模块 ABB磁场模块 过滤器 电源板 发射器 ESA触摸屏 电源 小车锁 微断 接头 压力继电器 综保 断路器 斩波器 平板可控硅 闪存卡 软启动器 塑壳断路器 综合保护机 线圈 AEG接触器 西门子过压保护器 电机 滑触线 编码器 西门子真空接触器 传感器换热器 法勒碳刷 法勒集电器
供货周期 现货 规格 4*15
货号 A5E03407403 应用领域 建材,电子,交通,印刷包装,纺织皮革
主要用途 变频器
罗宾康变频器变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。 [1]
变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速

FX1S-10MR-001 模块
USB-SC09-FX 电缆
LC1D205M5C 接触器
SKP15.000E2 执行器
FS300R12KE3/AGDR-72C 整流晶体
AINT-14C 触发板
1764-28BXB 模块
6ES7322-1BH01-0AA0 模块
6ES7321-1BH02-0AA0 模块
LY4NJ DC24V 继电器
DZ47-63 3P D63 断路器
FPBA-01 模块
6ES7972-0BB12-0XA0 总线连接器
6ES7972-0BB12-0XA0 总线连接器
RM1A48D75 固态继电器
DZ47-63 3P D40 断路器
DZ47-63 3P D32 断路器
6SE6440-2UD24-0BA1 变频器
1769-PA4 模块
LC1F185R7 配件
LADN22 配件
LADN02 配件
LRD05C 配件
972-0DP10 接头
6SY7000-0AC42 熔断器
6SE7041-2UL84-1GG0 模块
A40-30-10*220-230V 50HZ/230-240V 60HZ 接触器
LAD703M 配件
ZBVB4 配件
ZBVB6 配件
ZBVB5 配件
AX50-30-11-80*220-230V50HZ/230-240V60HZ 接触器
GV3P65 断路器
GV3A01 辅助触点
VT505W00000 触摸屏
ZBVB1 配件
ZBVB3 配件
ZBE101 配件
ZBE102 配件
FQ50-R6U-P45P2 光电开关
6GK5793-6MN00-0AA6 模块
N-30-SW 选择开关
SV-3-M5 选择开关
KFX-ET-620 传感器
CP6701-0001-0020 配件
VT155W000CN 触摸屏
CP1H-XA40DT-D 模块
6ES7392-1AM00-0AA0 40针前连接器
MR0100 传感器
IC65N 4P C63A 断路器
IC65N 2P C40A 断路器
TP-E1U 面板
777059 模块
AEW2-8-GC-H6-050-00E 编码器
6SL3040-1MA00-0AA0 模块
E2E-X8MD1 开关
SGDV-120A01A002000 控制器
SGMGV-13ADC61 伺服电机
IC65N 2P C20A 空气开关
IC65N 2P C63A 断路器
IC65N 3P C63A 断路器
A9V52463 漏保
A9V52240 漏保
1FK71D5-2AC71-1CG0 电机
6FX8002-2DC10-1BJ0 电缆
6FX8002-5CS41-1BJ0 电缆
6SL3060-4AA10-0AA0 电缆
IC65N 3P C63A 空气开关
XCE-145 限位开关
LC1D95M7C 接触器
LC1D65M7C 接触器
A9V52263 漏保
G3TB-OD201P DC5-24 固态继电器
G150-150-M44-2281-2/M44Y-1600-1-1368-3-FL1  I=1:150 凸轮开关
S25-FA50  DN50  PN16 流量计
6SL3060-4AD00-0AA0 电缆
DNC-50-80-PPV-A 电磁阀
S8VM-01505D 开关电源
S8VM-03024D 开关电源
S25-FA100 DN100 PN16 流量计
E3Z-T61 传感器
972-0DP20 接头
6EP1935-6MF01 模块
3RT1015-1BB42 开关
AF80-30-00-11 24-60V50/60HZ 20-60VDC 开关
C120H 3P D80A 断路器
C120H 3P D100A 断路器
RXM4AB2P7 中间继电器
XS4P30PA340 限位开关
ABL2REM24085H 电源
E3Z-G61 传感器
S203-C10 微断
S201-C10 微断

主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类

变频功率分析仪

 

变频功率分析仪(5张)

 :电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器“。 [4] 

整流器

大量使用的是二极管的变流器,它把工频电源变换为直流电源。也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。 [4] 

平波回路

在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。装置容量小时,如果电源和主电路构成器件有余量,可以省去电感采用简单的平波回路。 [4] 

逆变器

同整流器相反,逆变器是将直流功率变换为所要求频率的交流功率,以所确定的时间使6个开关器件导通、关断就可以得到3相交流输出。以电压型pwm逆变器为例示出开关时间和电压波形。 [4] 

控制电路是给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,它有频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”,将运算电路的控制信号进行放大的“驱动电路”,以及逆变器和电动机的“保护电路”组成。 [4] 

(1)运算电路:将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率。[4] 

(2)电压、电流检测电路:与主回路电位隔离检测电压、电流等。 [4] 

(3)驱动电路:驱动主电路器件的电路。它与控制电路隔离使主电路器件导通、关断。 [4] 

(4)速度检测电路:以装在异步电动机轴机上的速度检测器(tg、plg等)的信号为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。 [4] 

(5)保护电路:检测主电路的电压、电流等,当发生过载或过电压等异常时,为了防止逆变器和异步电动机损坏。 [4] 

功能作用

编辑

变频节能

变频器节能主要表现在风机、水泵的应用上。风机、泵类负载采用变频调速后,节电率为20%~60%,这是因为风机、泵类负载的实际消耗功率基本与转速的三次方成比例。当用户需要的平均流量较小时,风机、泵类采用变频调速使其转速降低,节能效果非常明显。而传统的风机、泵类采用挡板和阀门进行流量调节,电动机转速基本不变,耗电功率变化不大。据统计,风机、泵类电动机用电量占全国用电量的31%,占工业用电量的50%。在此类负载上使用变频调速装置具有非常重要的意义。目前,应用较成功的有恒压供水、各类风机、中央空调和液压泵的变频调速。 [5] 

在自动化系统中应用

由于变频器内置有32位或16位的微处理器,具有多种算术逻辑运算和智能控制功能,输出频率精度为0.1%~0.01%,且设置有完善的检测、保护环节,因此,在自动化系统中获得广泛应用。例如:化纤工业中的卷绕、拉伸、计量、导丝;玻璃工业中的平板玻璃退火炉、玻璃窑搅拌、拉边机、制瓶机;电弧炉自动加料、配料系统以及电梯的智能控制等。变提高工艺水平和产品质量方面的应用频器在数控机床控制、汽车生产线、造纸和电梯上的应用。 [5] 

在提高工艺水平和产品质量方面的应用

变频器还可以广泛应用于传送、起重、挤压和机床等各种机械设备控制领域,它可以提高工艺水平和产品质量,减少设备的冲击和噪声,延长设备的使用寿命。采用变频调速控制后,使机械系统简化,操作和控制更加方便,有的甚至可以改变原有的工艺规范,从而提高了整个设备的功能。例如,纺织和许多行业用的定型机,机内温度是靠改变送入热风的多少来调节的。输送热风通常用的是循环风机,由于风机速度不变,送入热风的多少只有用风门来调节。如果风门调节失灵或调节不当就会造成定型机失控,从而影响成品质量。循环风机高速启动,传动带与轴承之间磨损非常厉害,使传动带变成了一种易耗品。在采用变频调速后,温度调节可以通过变频器自动调节风机的速度来实现,解决了产品质量问题。此外,变频器能够很方便地实现风机在低频低速下启动并减少了传动带与轴承之间的磨损,还可以延长设备的使用寿命,同时可以节能40%。 [5] 

实现电机软启动

电机硬启动不仅会对电网造成严重的冲击,而且会对电网容量要求过高,启动时产生的大电流和震动对挡板和阀门的损害极大,对设备、管路的使用寿命极为不利。而使用变频器后,变频器的软启动功能将使启动电流从零开始变化,大值也不超过额定电流,减轻了对电网的冲击和对供电容量的要求,延长了设备和阀门的使用寿命,同时也节省设备的维护费用。 [6] 

分类

编辑

1.按输入电压等级分类

变频器按输入电压等级可分低压变频器和高压变频器,低压变频器国内常见的有单相220 V变频器、三相220 V变频器、i相380 V变频器。高压变频器常见有6 kV、10 kV变压器,控制方式一般是按高低一高变频器或高一高变频器方式进行变换的。 [7] 

2.按变换频率的方法分类

变频器按频率变换的方法分为交-交型变频器和交-直交型变频器。交-交型变频器可将工频交流电直接转换成频率、电压均可以控制的交流,故称直接式变频器。交直-交型变频器则是先把工频交流电通过整流装置转变成直流电,然后再把直流电变换成频率、电压均可以调节的交流电,故又称为间接型变频器。 [7] 

3.按直流电源的性质分类

在交-直-交型变频器中,按主电路电源变换成直流电源的过程中,直流电源的性质分为电压型变频器和电流型变频器。 [7] 

给定方式

编辑

变频器常见的频率给定方式主要有:操作器键盘给定、接点信号给定、模拟信号给定、脉冲信号给定和通讯方式给定等。这些频率给定方式各有优缺点,必须按照实际的需要进行选择设置,同时也可以根据功能需要选择不同频率给定方式进行叠加和切换。 [6] 

控制方式

编辑

低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交—直—交电路。其控制方式经历了以下四代。 [8] 

正弦脉宽调制(SPWM)控制方式

其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。 [8] 

电压空间矢量(SVPWM)控制方式

它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到*。 [8] 

矢量控制(VC)方式

矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。 [8] 

直接转矩控制(DTC)方式

1985年,德国鲁尔大学的DePenbrock教授*提出了直接转矩控制变频技术。该技术在很大程度上解决了上述矢量控制的不足,并以新颖的控制思想、简洁明了的系统结构、优良的动静态性能得到了迅速发展。该技术已成功地应用在电力机车牵引的大功率交流传动上。 直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。它不需要将交流电动机等效为直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。 [8] 

矩阵式交—交控制方式

VVVF变频、矢量控制变频、直接转矩控制变频都是交—直—交变频中的一种。其共同缺点是输入功率因数低,谐波电流大,直流电路需要大的储能电容,再生能量又不能反馈回电网,即不能进行四象限运行。为此,矩阵式交—交变频应运而生。由于矩阵式交—交变频省去了中间直流环节,从而省去了体积大、价格贵的电解电容。它能实现功率因数为l,输入电流为正弦且能四象限运行,系统的功率密度大。该技术虽尚未成熟,但仍吸引着众多的学者深入研究。其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。具体方法是: [8] 

1、控制定子磁链引入定子磁链观测器,实现无速度传感器方式; [8] 

2、自动识别(ID)依靠精确的电机数学模型,对电机参数自动识别; [8] 

3、算出实际值对应定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制; [8] 

4、实现Band—Band控制按磁链和转矩的Band—Band控制产生PWM信号,对逆变器开关状态进行控制。 [8] 

矩阵式交—交变频具有快速的转矩响应(<2ms),很高的速度精度(±2%,无PG反馈),高转矩精度(<+3%);同时还具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150%~200%转矩。 [8] 

变频器的选用

编辑

选用变频器的类型,按照生产机械的类型、调速范围、静态速度精度、起动转矩的要求,决定选用那种控制方式的变频器合适。所谓合适是既要好用,又要经济,以满足工艺和生产的基本条件和要求 [9]  

需要控制的电机及变频器自身

1)电机的极数。一般电机极数以不多于(极为宜,否则变频器容量就要适当加大。

2)转矩特性、临界转矩、加速转矩。在同等电机功率情况下,相对于高过载转矩模式,变频器规格可以降额选取。3)电磁兼容性。为减少主电源干扰,使用时可在中间电路或变频器输入电路中增加电抗器,或安装前置隔离变压器。一般当电机与变频器距离超过50m时,应在它们中间串入电抗器、滤波器或采用屏蔽防护电缆 [9]  

变频器功率的选用

系统效率等于变频器效率与电动机效率的乘积,只有两者都处在较高的效率下工作时,则系统效率才较高。从效率角度出发,在选用变频器功率时,要注意以下几点: [9] 

1)变频器功率值与电动机功率值相当时合适,以利变频器在高的效率值下运转。 [9] 

2)在变频器的功率分级与电动机功率分级不相同时,则变频器的功率要尽可能接近电动机的功率,但应略大于电动机的功率。 [9] 

3)当电动机属频繁起动、制动工作或处于重载起动且较频繁工作时,可选取大一级的变频器,以利用变频器长期、安全地运行。 [9] 

4)经测试,电动机实际功率确实有富余,可以考虑选用功率小于电动机功率的变频器,但要注意瞬时峰值电流是否会造成过电流保护动作。 [9] 

5)当变频器与电动机功率不相同时,则必须相应调整节能程序的设置,以利达到较高的节能效果 [9]  

变频器箱体结构的选用

变频器的箱体结构要与环境条件相适应,即必须考虑温度、湿度、粉尘、酸碱度、腐蚀性气体等因素。常见有下列几种结构类型可供用户选用: [9] 

1)敞开型IPOO型本身无机箱,适用装在电控箱内或电气室内的屏、盘、架上,尤其是多台变频器集中使用时,选用这种型式较好,但环境条件要求较高; [9] 

2)封闭型IP20型适用一般用途,可有少量粉尘或少许温度、湿度的场合; [9] 

3)密封型IP45型适用工业现场条件较差的环境; [9] 

4)密闭型IP65型适用环境条件差,有水、尘及一定腐蚀性气体的场合 [9]  

变频器容量的确定

合理的容量选择本身就是一种节能降耗措施。根据现有资料和经验,比较简便的方法有三种: [9] 

1)电机实际功率确定发。首先测定电机的实际功率,以此来选用变频器的容量。 [9] 

2)公式法。当一台变频器用于多台电机时,应满足:至少要考虑一台电动机启动电流的影响,以避免变频器过流跳闸。 [9] 

3)电机额定电流法变频器。 [9] 

变频器容量选定过程,实际上是一个变频器与电机的匹配过程,常见、也较安全的是使变频器的容量大于或等于电机的额定功率,但实际匹配中要考虑电机的实际功率与额定功率相差多少,通常都是设备所选能力偏大,而实际需要的能力小,因此按电机的实际功率选择变频器是合理的,避免选用的变频器过大,使投资增大。对于轻负载类,变频器电流一般应按1.1N(N为电动机额定电流)来选择,或按厂家在产品中标明的与变频器的输出功率额定值相配套的大电机功率来选择 [9]  

主电源

1)电源电压及波动。应特别注意与变频器低电压保护整定值相适应,因为在实际使用中,电网电压偏低的可能性较大。 [9] 

2)主电源频率波动和谐波干扰。这方面的干扰会增加变频器系统的热损耗,导致噪声增加,输出降低。 [9] 

3)变频器和电机在工作时,自身的功率消耗。在进行系统主电源供电设计时,两者的功率消耗因素都应考虑进去 [9]  

发展方向

编辑

电力电子器件的基片已从Si(硅)变换为SiC(碳化硅),使电力电子新元件具有耐高压、低功耗、耐高温的优点;并制造出体积小、容量大的驱动装置;

磁铁电动机也正在开发研制之中。随着IT技术的迅速普及,变频器相关技术发展迅速,未来主要向以下几个方面发展: [10] 

网络智能化

智能化的变频器使用时不必进行很多参数设定,本身具备故障自诊断功能,具有高稳定性、高可靠性及实用性。利用互联网可以实现多台变频器联动,甚至是以工厂为单位的变频器综合管理控制系统。 [10] 

专门化和一体化

变频器的制造专门化,可以使变频器在某一领域的性能更强,如风机、水泵用变频器、电梯变频器、起重机械变频器、张力控制变频器等。除此以外,变频器有与电动机一体化的趋势,使变频器成为电动机的一部分,可以使体积更小,控制更方便。 [10] 

节能环保无公害

保护环境,制造“绿色”产品是人类的新理念。电力拖动装置应着重考虑节能、变频器能量转换过程的低公害,使变频器在使用过程中的噪声、电源谐波对电网的污染等问题减少到低程度。 [10] 

适应新能源

现在以太阳能和风力为能源的燃料电池以其低廉的价格崭露头角,有*之势。这些发电设备的大特点是容量小而分散,将来的变频器就要适应这样的新能源,既要高效,又要低耗。现在电力电子技术、微电子技术和现代控制技术以惊人的速度向前发展,变频调速传动技术也随之取得了日新月异的进步,这种进步集中体现在交流调速装置的大容量化、变频器的高性能化和多功能化、结构的小型化等方面。 [10] 

罗宾康变频器罗宾康变频器

会员登录

×

请输入账号

请输入密码

=

请输验证码

收藏该商铺

X
该信息已收藏!
标签:
保存成功

(空格分隔,最多3个,单个标签最多10个字符)

常用:

提示

X
您的留言已提交成功!我们将在第一时间回复您~
拨打电话
在线留言